Pytorch的Variable
pytorch两个基本对象:Tensor(张量)和Variable(变量)
其中,tensor不能反向传播,variable可以反向传播。
tensor的算术运算和选取操作与numpy一样,与numpy相似的运算操作都可以迁移过来。
Variable
variable是一种可以不断变化的变量,符合反向传播,参数更新的属性。pytorch的variable是一个存放会变化值的地理位置,里面的值会不停变化,像装糖果(糖果就是数据,即tensor)的盒子,糖果的数量不断变化。
在PyTorch中计算图的特点总结如下:autograd根据用户对Variable的操作来构建其计算图。
variable默认是不需要被求导的,即requires_grad属性默认为False,如果某一个节点的requires_grad为True,那么所有依赖它的节点requires_grad都为True。
variable的volatile属性默认为False,如果某一个variable的volatile属性被设为True,那么所有依赖它的节点volatile属性都为True。volatile属性为True的节点不会求导,volatile的优先级比requires_grad高。
多次反向传播(多层监督)时,梯度是累加的。一般来说,单次反向传播后,计算图会free掉,也就是反向传播的中间缓存会被清空【这就是动态度的特点】。为进行多次反向传播需指定retain_graph=True来保存这些缓存。
backward(grad_variables=None,retain_graph=None,create_graph=None**)** 反向传播,求解Variable的梯度。放在中间缓存中。
grad_variables是y求导时的梯度参数,由于autograd仅用于标量,因此当y不是标量且在声明时使用了requires_grad=True,必须指定grad_variables参数,在完成原始的反向传播之后得到的梯度会对这个grad_variables进行修正,然后将结果保存在Variable的grad中。grad_variables形状必须与Variable一致。在深度学习中求导与梯度有关,因此grad_variables一般会定义类似为[1, 0.1, 0.01, 0.001],表示梯度的方向,取较小的之不会对求导效率有影响。